Orphaned Wells, Wind Farms and Net Present Value

Wells left behind by industry threaten to overwhelm Western states.

Source: ‘Orphaned’ oil and gas wells are on the rise (High Country News)

A good High Country News story about the problem of orphaned methane wells in Colorado & Wyoming. Well operators “become bankrupt” and walk away, leaving the public to cover cleanup costs. In theory, operators have to put a bond up to get a permit, but the bond isn’t enough to cover cleanup costs. One operator named Atom recently forfeited a $60K bond on 50 wells, which subsequently cost the public ~$600K to clean up.  The same problem exists with reclamation bonds covering coal mines on federal land in Wyoming, except the dollar values are three orders of magnitude larger.

If the bond amounts were much larger, the money vs. time curve of a methane well or coal mine would start to look much more like that of a wind or solar installation, from capital’s point of view. Big reclamation bonds would look like part of a big up front investment, which is then followed by a long trickle of income as the mine or well produces over its lifetime.

You can slosh the costs & profits around through PPAs and other arrangements, but at a basic level, that big up front cost + long trickle of income is the fundamental cashflow time series of renewables too. Even if these different energy investments all add up to the same dollar value, the time distribution matters, because capital often just cares about net present value. (See Dave Roberts’ famous Discount Rates: A Boring Thing You Should Know About With Otters!)
 
From an extractor’s point of view, pushing the reclamation costs into the future makes them unimportant, because they’re discounted to the present. By the time they loom large, the true remaining value of the well or mine is already negative, with cleanup costs included. And the only rational thing to do at that point is to walk away. That’s what bankruptcy is for. But in this case, the counterparty is the public, and we have no upside risk.
 
The public takes on the environmental or cleanup costs of the mine or well at the outset, rather than internalizing those costs within the business decision. To put energy investments without those environmental or cleanup costs on equal footing, you’d need to give them up front or ongoing subsidies. And here we’re just talking about the traditional “environmental” costs — not the climate costs.
 
Half of finance and capital markets is just smuggling money through time. We can pull piles of it back from the future. Or we can exile our debts to the future. From and to those people we don’t think are us. The other half of finance seems to do the same thing with risks, extracting certainty from others, pushing uncertainty onto others, moving uncertainty through time. Trying to keep upside uncertainty, and lose downside uncertainty.
 

The Myth of Price

Our society’s prevailing economic zeitgeist assumes that everything has a price, and that both costs and prices can be objectively calculated, or at least agreed upon by parties involved in the transaction.  There are some big problems with this proposition.

Externalized costs are involuntary transactions — those on the receiving end of the externalities have not agreed to the deal.  Putting a price on carbon can theoretically remedy this failure in the context of climate change.  In practice it’s much more complicated, because our energy markets are not particularly efficient (as we pointed out in our Colorado carbon fee proposal, and as the ACEEE has documented well), and because there are many subsidies (some explicit, others structural) that confound the integration of externalized costs into our energy prices.

The global pricing of energy and climate externalities is obviously a huge challenge that we need to address, and despite our ongoing failure to reduce emissions, there’s been a pretty robust discussion about externalities.  As our understanding of climate change and its potentially catastrophic economic consequences have matured, our estimates of these costs have been revised, usually upwards.  We acknowledge the fact that these costs exist, even if we’re politically unwilling to do much about them.

Unfortunately — and surprisingly to most people — it turns out that understanding how the climate is going to change and what the economic impacts of those changes will be is not enough information to calculate the social cost of carbon.

Continue reading The Myth of Price

Alone in the Wilderness

I’ve been thinking a lot about risk tolerance and discount rates lately, and how they profoundly shape our perception of the economic costs associated with minimizing climate change.  Basically… if you’re willing to vary your preference for the present over the future or the level of uncertainty you’re willing to accept, then you can make mitigation cost whatever you want.  All else being equal, low discount rates and low risk tolerance make taking action cheap, while high discount rates and high risk tolerance make it expensive.

Unfortunately, we live in a society with high discount rates and high risk tolerance.  Or at least, that’s what you’d infer from our collective behavior.  It’s also what you’d gather from a lot of the rhetoric around climate action, and our obsession with trying to make it “economically efficient”, to the point of maybe not doing it at all.  Our risk tolerances and discount rates aren’t really objectively measurable.  They are fluid, and context sensitive.  The same person in different situations will not behave consistently.  Different people in the same situation may come to different conclusions.  How we deal with uncertainty and the value of the future is a personal as well as cultural decision.

For some reason, I find myself with a low pure time preference, and an aversion to many kinds of risk.  This is part of why I find our unwillingness to act on climate infuriating, and why I’m working on climate policy.  I got to wondering, how did I end up this way?  Why isn’t it more common?

Continue reading Alone in the Wilderness

Feds underestimate costs of carbon pollution

NRDC blogs about a new study on federal use of discount rates in calculation of carbon costs, which suggests we grossly underestimate the present value of reducing emissions.  Did you even know that the feds had put an internal price on CO2?  They behave as if it costs $21/ton to emit.  But that’s based on a discount rate of around 3%, which is the highest rate OMB suggests using for inter-generational costs.  Part II of the very detailed NRDC post is here.

Could utility ratepayers be paid to accept fuel price risk?

Risk isn’t free; it’s a traded commodity with a price.  Most prudent financial entities with a lot of exposure to the prices of natural resources try to manage unpredictable fluctuations in those prices by trading in risk.  Producers worry about prices being too low; consumers need to protect against prices being too high.  Risk trading (hedging) allows the two types of parties to share these risks, and so create a more stable market overall.  Stable prices are good for business.  You can plan around them in the long term, even if they end up being a bit higher on average.

In regulated electricity markets like we have in Colorado, fuel price risk often ends up being borne primarily by the rate payers rather than by the utility companies.  In theory, state regulators ought act on behalf of the public (energy consumers) to accurately represent their tolerance of or aversion to risk in the resource planning process.  Historically, the implicit assumption has been that the rate paying public is fairly risk tolerant, i.e. very little has been done from a regulatory point of view to avoid the potential detrimental effects of future fuel price volatility.  This is a historical accident.  Until recently, we didn’t have much choice in the matter.  Of all the major sources of power available a century ago when we began electrifying society, only hydroelectric is similar in terms of its capital and operating structure to distributed renewables like wind and solar.  All three have relatively large up front capital costs, and low ongoing operating and maintenance expenses.  But for most of the time we’ve had electricity, most of that electricity has necessarily been dependent on fossil fuels, and so the question of whether or not customers wanted to take on the risk of future fuel cost fluctuations was immaterial.  Fuel was the only option for expanding our electricity supply once we’d tapped the easily accessible hydro — if you wanted lots of power, it simply came with fuel price risks.  This is no longer the case.  Today, we have options that trade off between cost and risk, but so far as I can tell we haven’t done a good job of talking about the entire spectrum of possibilities.  Broadly they seem to fall into four categories:

  1. Traditional fossil fuel-based power, that exposes rate payers to the full range of future price fluctuations.
  2. Capital intensive, fuel-free power like wind, solar, enhanced geothermal and hydro which have a range of prices, that are very predictable over the 20+ year lifetime of the capital investment.
  3. Fossil fuel-based power that is aggressively hedged, in order to protect rate-payers against future fuel price fluctuations.
  4. Fuel-free power with predictable future costs, combined with someone else’s fuel cost risks, which rate-payers would be paid to take on.

The first two options are the most commonly discussed.  The third — hedged fossil fuels — is becoming somewhat more common, with some public utility commissions requiring the utilities they regulate to dampen fuel cost fluctuations.  However, they generally do not require the utilities to hedge to the point where the risk profile of the fossil fuel option is similar to that of fuel-free power sources.  This is what makes the fourth option interesting.

Continue reading Could utility ratepayers be paid to accept fuel price risk?

Putting A Price Tag On Your Descendants

NPR’s Planet Money takes on the Discount Rate, and attempts to explain how it fundamentally changes our valuation of the future.  At a 7% discount rate (the OMB’s suggested discount rate), we could put away $0.20 today and have $100,000,000,000,000 (that’s $100 trillion) with which to address the costs of climate change in 500 years.  Of course, that won’t matter if we’ve ended civilization in the meantime.  Riiight.

Discounting Fuels

It’s often been said that “time is money,” and it turns out to be more than an aphorism.

I’m going to try and tell you a story about discounting, which is one of the ways that we convert between time and money. The story has broad implications for the energy investments we choose. It’s not entirely straightforward, and if it’s going to make sense there are some background pieces you’re going to need. The background is important because the ending depends not only on understanding what is being done, but why. This story happens to be about Xcel Energy and Colorado, but the same thing happens in other places, with other companies, and in other contexts too.

To greens my argument may seem circumspect. I’m not going to challenge the doctrine of Everlasting Economic Growth. I’m not going to look at the large externalized costs of burning fossil fuels. I’m not going to argue against the monopoly electrical utility model. Those are important discussions to have — they’re just not the one I’m having here. What I’m trying to do is show that a minor change in the way we calculate the cost of future energy can drastically alter what kind of power we decide to invest in for the next century, even if we only look at the decision in selfish financial terms.

To the finance geeks among you, much of the background will be familiar, but the situation may seem strange unless you’re familiar with how regulated monopolies work. I haven’t been able to find anyone familiar with energy finance who thinks what we’re currently doing makes sense, but if you’ve got a thoughtful rebuttal, I’m genuinely interested to hear it.

Continue reading Discounting Fuels