When do fuel costs actually matter?

Kim Stanley Robinson gave a fun talk at Google a couple of years ago in which he brought up the possibility of large, slow, wind powered live-aboard bulk freighters, among other ideas.  I was reminded of it by this post from Alex Steffen.  Especially for commodities like coal, grains and ore — non-perishable goods that get carried in bulk carriers — what matters is the net flux of materials and the predictability of supply.  More (or larger) slow ships can deliver the same flux as fewer high speed ones.  International contracts for these goods can span decades.  If fuel prices became a significant portion of their overall cost, it would be worthwhile to make this kind of ships-for-fuel substitution.  However, it turns out that fuel is a vanishingly small proportion of the overall cost of most internationally traded goods.

Containers

Our neighbors in Pasadena moved back to Thailand, and packed their entire household into a single half-sized shipping container.  The cost to get it from their home in SoCal to their home outside Bangkok was $2000.  Their combined airfare was probably a larger fraction of the cost of moving across the Pacific.  You can get a full-sized shipping container moved from point A to point B, anywhere within the global shipping network, for several thousand dollars.  If your cargo is worth significantly more than that, then you don’t have to worry about Peak Oil destroying your business.  For a typical container carrying $500,000 worth of goods, the shipping costs (not all of which are related to fuel!) represent about 1% of the final costs of the goods.  If fuel prices were to go up by a factor of ten, the shipping costs would still only represent 10% of the overall cost.  This would have an effect on business, to be sure, but it would not cause global trade to collapse.

Continue reading When do fuel costs actually matter?

Reckless Driving in the Netherlands

In the US we wouldn’t think twice about a young testosterone laden driver endangering the lives of four cyclists with his “monster truck”.  If anything, we’d probably blame the cyclists — especially if they weren’t wearing helmets.  But how is it different from someone carelessly brandishing a gun in your face?  That’s how seriously they seem to take it in the Netherlands:

From David Hembrow via Streetfilms.

Into Eternity by Michael Madsen

I am now in this place where you should never come.  We call it Onkalo.  Onkalo means hiding place.  In my time it is still unfinished, though work began in the 20th century when I was just a child.  Work will be completed in the 22nd century, long after my death.  Onkalo must last 100,000 years. Nothing built by man has lasted even a tenth of that time span.  But we consider ourselves a very potent civilization.

If we succeed, Onkalo will most likely be the longest lasting remains of our civilization.  If you, some time far into the future find this, what will it tell you about us?

It isn’t often that you find people seriously thinking about deep time in a concrete way.  Usually it’s abstract, just a thought experiment, not an engineering problem or a gut wrenching moral quandry.  But this is apparently not the case for the Scandinavians who have taken on the task of storing their spent nuclear fuel.  Finland has decided to go forward with permanent storage, in a typically responsible, deliberate, earnest Nordic way.

Continue reading Into Eternity by Michael Madsen

We aren’t so tough

Winter Bike to Work Day in Boulder

We’ve had some honest-to-god winter weather in Boulder this past week, with overnight temperatures as low as -25°C (-13°F), and light snowfall on and off for several days.  Here, if you keep riding your bike around town when the weather is like this, people think you’re tough, hard core, committed… or crazy:

@BoulderParking: Boulder bikers are tough & committed. Despite the sub zero temps this week… bike commuters were out every day!

Continue reading We aren’t so tough

Energy Efficiency and Economics at Walnut Mews

Our condo HOA had a meeting last fall, and somebody brought up selling the flat plate collectors on the roof that are part of our defunct solar thermal hot water system.  The 750 gallon cylindrical storage tank rusted out in 2003 after 20 years of service.  The outbuilding that houses it was basically built over the tank, so swapping it out for a new one would have meant either chopping the thing up in place with a cutting torch and building a new one on site, or removing the roof, which nobody was keen on.  Some plumbing got re-routed and the tank sits there still, derelict.  It was also mentioned that the main boiler for our hydronic district heating might be nearing the end of its days.  I volunteered to look into whether it would make economic sense to repair the solar thermal system, and what the options were for the boiler.

Given that flat plate solar thermal collectors generate an average of about 1kBTU worth of heat per day per square foot (according to the US EIA), and given that we have about 250 square feet of collecting area (nine 28 square foot panels), the current system ought to collect something like 250kBTU/day.  Our current boiler consumes 520kBTU/hr worth of gas, meaning that the solar thermal system could at best displace a half hour’s worth of operation each day.  Gas costs about $8/million BTUs, so the boiler costs about $4/hr to run.  If we assume optimistically that system losses are negligible, and that the boiler runs at least half an hour a day 250 days a year (it was only hooked up to the baseboard heating, not the domestic hot water) then the solar thermal system is capable of displacing something like $500 worth of gas each year.  This is a best case scenario though, since the hydronic system needs water that’s hotter than the flat plate collectors can make it (so the boiler will have to do some work to boost the temperature) and because the system losses are almost certainly non-negligible.

Still, $500/year might be a significant savings.  To know whether it’s really worthwhile, we need to know how much it will cost up front to get this savings, and how long we ought to expect to be able to collect it (i.e. what’s the system’s expected lifetime).  I got wildly varying estimates of the cost to get the system up and running again.  At the low end it was $5000, to leave the rusty tank where it is and put a collapsible storage bladder in the crawlspace.  At the high end it was $20,000 to remove the old tank and build a new spray-foam insulated stainless steel one in its place.  I used this calculator to sanity check my energy numbers above (which don’t seem crazy), as well as the estimates.  It suggests that all in, the total system cost including installation would be something like $28,000.  I suspect that a plastic bladder in the crawlspace wouldn’t be as efficient or as durable as the new stainless tank.  For the sake of argument, let’s say the cheap option will only last 5 years, and the expensive one will last 30 years.  The original tank lasted about 20 years.  Here’s what it looks like today:

Derelict Solar Thermal Storage Tank

Continue reading Energy Efficiency and Economics at Walnut Mews

A dispatch from the future

A firsthand account of the floods in Queensland.  Australia has been living in the (climatic) future for some time, facing the prospect of desalinization plants and admitting that most of their agriculture is not viable, given soil both saline and infertile, and the decade long drought.  The government is buying up the water rights in the Murray Darling basin because it’s cheaper than agricultural subsidies, and the rural vote is given disproportionate weight in Australian law.  There is a dark poetry in the fact that Queensland’s export coal mines are underwater today.  None of this is to say that climate change is necessarily behind the floods or the drought or the bush fires from a few years ago, or the mad cold winter in Europe this year, or the forest fires in Russia this summer.  We won’t ever be able to attribute any particular weather event to anthropogenic CO2, but all this is the kind of thing one ought to expect if one opts to change the composition of the homeworld’s atmosphere:

Toward a Zero Energy Home by David Johnston and Scott Gibson

I’ve been looking, apparently in vain, for a good book (that’s not in German!) detailing Passive House building and modeling techniques.  The best I’ve been able to do so far is Toward a Zero Energy Home, and it must have been pretty good, since I read it cover-to-cover in less than 24 hours.  It’s not particularly dense or detailed, but it was a nice quick overview of low energy building systems, with lots of pretty pictures, and a dozen case studies from all over North America, including a couple right here in Boulder.

Refurbished with passive house components, kindergarten in Estonia Valga

The goal that the authors have chosen to highlight — “Net Zero” — means that the buildings in question produce as much energy as they consume on an annually averaged basis.  This necessarily means that they all have some on-site production, wind, PV, solar-thermal hot water, etc.  However, to keep such projects reasonably cost effective, it’s necessary to focus first on energy efficiency measures.  Most important among these is a very tight building envelope, much more insulation than code requires, and appropriate glazing for passive solar gain.  Then the internal power loads need to be minimized, by using energy efficient appliances and LED or CFL lighting.  Only after doing all that is it financially worthwhile to start adding on-site renewable generation, capable of meeting the overall annual energy demands of the dwelling.  Financially worthwhile, that is, if you have already decided that you want to create a Net Zero building.

Continue reading Toward a Zero Energy Home by David Johnston and Scott Gibson

German Passive House building robots

A short video from German home fabricator Hanse House.  They do both stock and custom homes, but both are fabricated off-site.  The video shows their production facility, and some of the techniques for putting together a building in pieces.  It’s pretty awesome.  Half robotic assembly line, and half humans, building to what’s essentially a CAD specification, with pipes and wires already laid in place within the structural elements before it gets loaded on the truck that takes it off to the building — or rather assembly — site, where the foundation awaits:

http://www.youtube.com/watch?v=joNGqfLMZxY

And here’s a time-lapse of one of their Passive Houses being assembled on-site:

I wonder if they do multi-family buildings too.  What it would take to get a facility like this operating in Boulder County?  Other than a rebound in the housing industry of course.

Boulder’s Passive Aggressive Building Standards

Usually when people say that “better is the enemy of good enough”, they’re pointing out that striving for perfection can be a distraction from just getting the job at hand done.  There are other dynamics that involve these concepts too.  As social animals, we tend to judge ourselves against those around us.  Once our basic needs have been satisfied, our relative wealth or deprivation often becomes more important to us than our absolute level of well being.  We have little concept of how much is enough.  This can lead to the familiar runaway acquisitiveness (keeping up with the Joneses) when there is a well established (or constructed…) social norm favoring consumption.  Less obviously, it can also lead to an inappropriate lack of ambition when faced with an objective task that is not supported by widespread social norms.

Over the last couple of years Boulder has upped its building energy efficiency standards.  The new permitting regime requires buildings to perform better — net of on-site generation like photovoltaics — than the 2006 international building codes (IBC).  Smaller dwellings (< 3000 square feet) have to use 30% less energy than the baseline.  Medium homes (3000-5000 sq ft) need to do 50% better, and large ones (> 5000 sq ft) have to beat it by 75%.  Obviously this is an improvement over the previous situation, but in comparison to what is possible, and what is necessary to combat climate change, it’s actually pretty unimpressive.  Homes of all sizes built to the Passive House standard use 80-90% less energy than the baseline code, and they do it without counting any on-site power generation against the building’s energy consumption, whereas the HERS index that is used in the Boulder code does count on-site generation.  This is an important distinction, because the atmosphere doesn’t cancel out your nighttime coal-fired emissions with the solar electricity that you sell onto the grid during the day.  All it cares about is the total amount of CO2 released.

Continue reading Boulder’s Passive Aggressive Building Standards

The Yeti Homeland Project

I’m not sure what to make of our willingness to participate in the terraforming of the Earth.  To explore it, I’ll consider an alternative history in which Antarctica was marginally habitable, and colonized a million years ago by woolly hominids who developed a Yeti civilization.  Our whaling vessels meet up with them in the 1820s, but it’s so cold down there that nobody feels the need to molest them except for few hardy anthropologists, the occasional overzealous missionary expedition, and the usual cohort of scientists who will study the ends of the Earth, no matter how inhospitable.  Inevitably, the Yeti spend some late nights with the scientists in their hot tubs watching the aurorae.

They get to talking about the magnetosphere, some atmospheric physics, and the geology of their ice-clad homeland.  One day they decide their lives would be better if they could inhabit the entire continent, instead of just clinging to the coastal fringe, and so with the help of some misguided sympathizers, they develop a vast clandestine industrial complex pumping long-lived fluorinated super greenhouse gasses like CF4, C2F6, and SF6 into the atmosphere to warm things up.  These compounds are vastly more powerful warming agents than CO2 and methane.  They are also long lived atmospheric species, sticking around for up to 50,000 years.  If a serious industrial complex were set up to produce and release them en masse, they would close a good chunk of the atmosphere’s thermal infrared window and radically alter the climate for tens of thousands of years.  This atmospheric engineering could be done over the course of an election cycle, especially if the Yeti bastards had help from the cold-hearted Canucks and Russkies.

Would the G-20, the OECD or the UN Security Council stand by while a rogue Yeti nation threatened the billions of people who live in coastal cities, or depend on glacial water supplies, all in the name of Manifest Destiny?  Of course not.  We’d be more likely to bomb their furry white asses back into the Ice Age.

Continue reading The Yeti Homeland Project